

Pulmonary Surfactant for the treatment of premature infants suffering from Neonatal Respiratory Distress Syndrome

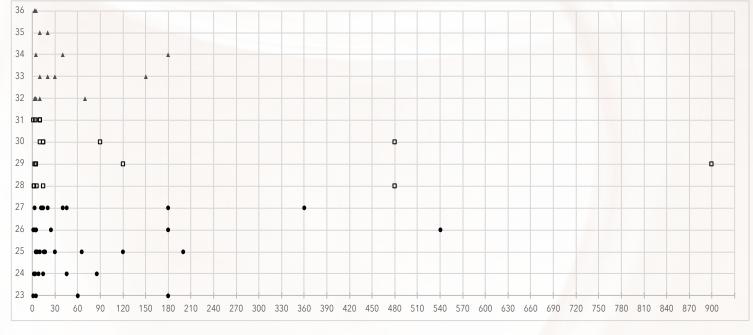
The market leader for pulmonary surfactant in Canada

Their Inspiration is Our Inspiration

Summary product information

Therapeutic classification: Lung surfactant (bovine)

Route of administration: Intratracheal instillation

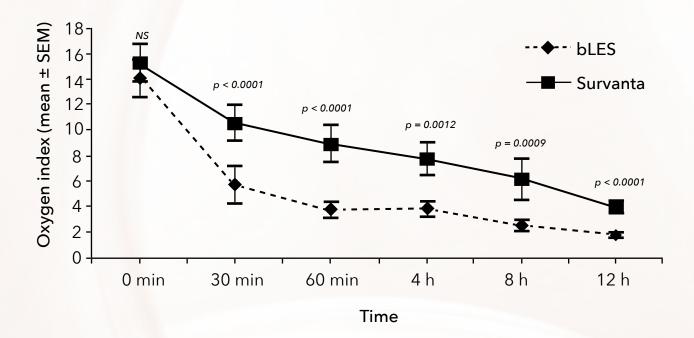

Dosage form: Suspension

Strength: 27 mg phospholipid/mL

Fast clinical response

Gestational age (weeks)

- Patients have weaned to room air (FiO₂ concentration = 0.21) in as little as **one minute.**¹
- The median length of time to wean a patient to room air was **10 minutes** across all birth weights and gestational ages.¹


Length of time to wean FiO₂ concentration to 0.21 (minutes)

● Group 1: 23 to 27 weeks ☐ Group 2: 28 to 31 weeks ▲ Group 3: 32 to 36 weeks

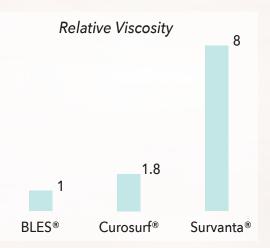
¹ Stockley, E., Valotaire, R., Miller, M., da Silva, O. Effects of bovine lipid extract surfactant administration in preterm infants treated for respiratory distress syndrome. Health Sci Rep. 2018;e34.

BLES® vs. Survanta®

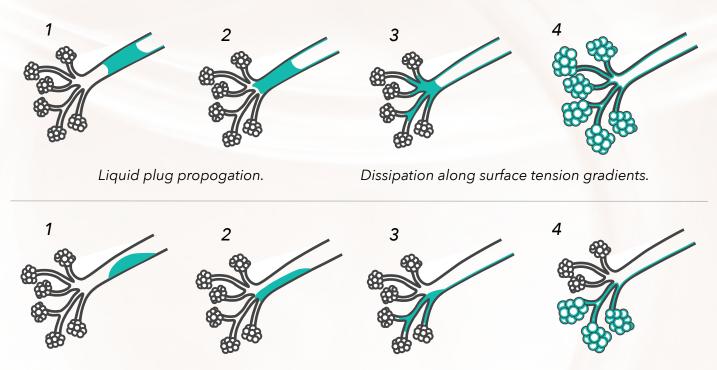
• BLES® has been demonstrated to have a faster response time than Survanta®. In a clinical trial comparing BLES® and Survanta®, BLES® was associated with a more rapid and sustained improvement in oxygenation within 30 minutes post-administration when compared with Survanta®.²

Single dose treatment success

• Most patients require only one dose of BLES®. Recent data found that 88% (72 out of 82) of preterm infants required only a single dose of BLES® to wean FiO_2 concentration to 0.21.1


All natural with no additives

• BLES® is an all-natural surfactant with no additives or supplemental components.


² Lam BBC, Ng YK, Wong KY. Randomized trial comparing two natural surfactants (Survanta vs. bLES) for treatment of neonatal respiratory distress syndrome. Pediatr Pulmonol. 2005 Jan;39(1):64-p.

Low viscosity, higher volume

- BLES® has the *lowest viscosity* of all commercially available pulmonary surfactants in Canada. ^{3,4,5}
- Lower viscosity allows quicker spreading in fewer breaths and more uniform distribution throughout the lungs, contributing to a relatively fast response time.⁶

• Higher volumes of surfactant produce more uniform distribution throughout the lungs, and increases the chances of proper distribution, improving the response to treatment.⁷

Lack of liquid plug results in insufficient distribution of surfactant in the lungs.8

⁵ In-house testing; not peer reviewed.

³ Thai, L.P.A., Mousseau, F., Oikonomou, E.K., J.F. On the rheology of pulmonary surfactant: Effects of concentration and consequences for the surfactant replacement therapy. Colloids. Surf. B. 2019;178:337-345.

⁴ Lewis, J. F., Goffin, J., Yue, P., McCaig, L. A., Bjarneson, D., Veldhuizen, R. A. Evaluation of exogenous surfactant treatment strategies in an adult model of acute lung injury. J Appl Physiol. 1996;80(4):1156-64.

⁶ Nouraeyan, N., Lambrinakos-Raymond, A., Leone, M., Sant'Anna, G. 2014. Surfactant administration in neonates: A review of delivery methods. Can J Respir Ther. 2014;50(3): 91-95.

⁷ Espinosa, F. F., and R. D. Kamm. Meniscus formation during tracheal instillation of surfactant. J Appl Physiol. 1998;85(1): 266-272. ⁸ Blood, A. Peridosing effects of surfactant administration: treating the lung without harming the brain [PowerPoint Slides]. Retrieved from www.nicuniversity.org/Portals/1/Downloads/PeridosingEffectsOfSurfactantAdministration.pdf.

Proven success with LISA and InSurE

- BLES® can be administered either via the LISA method (less invasive surfactant administration) or the InSurE method (Intubate Surfactant Extubate).
- The low viscosity of BLES® allows for successful administration with both methods and rapid spreading in the distal airways.
- BLES® is compatible with BLEScath™, a purpose-built thin catheter for the LISA method. 9,10

Intact lung lavage extraction process

• BLES® is the only surfactant in Canada that is derived from an intact lung lavage process, ensuring the lowest level of potential contaminants.¹¹

The only commercially available surfactant with a frozen shelf-life

• Hospitals can store BLES® frozen below -10°C for up to 36 months. Alternatively, hospitals can store BLES® refrigerated upon receipt of the hospital for up to 10 months and record the new expiry date in the space provided on the vial labelling.

BLES® should be warmed to room temperature, but no higher than body temperature before being administered. Warming can be accomplished in the following ways (times are approximate):

Method of Warming	Refrigerated Vials	Frozen Vials
In the hand	5 min.	10 to 15 min.
On the counter	20 min.	60 min.
In a 37°C water bath	2 min.	5 min.

Once at room temperature, gently invert the vial to suspend the lipid and disperse any agglomerates. Do not shake the vial.

⁹ BLES® Product Monograph, January 31, 2022.

¹⁰ BLEScathTM Instructions for Use (IFU) MD0102A.

¹¹ Chen, C. M., Chang, C. H., Chao, C.H., Wang, M.H., Yeh, T.F. Biophysical and chemical stability of surfactant/budesonide and the pulmonary distribution following intra-tracheal administration. Drug Deliv. 2019; 26 (1): 604-6119

Cost effective

- BLES® is the most affordable surfactant per mL and per patient kg in Canada. 12, 13
- BLES® is available in multiple vial sizes to minimize the cost per patient. The different sizes may be used in combination to avoid potential waste of product.
- \bullet BLES® often only requires one dose to wean patients to a FiO $_2$ concentration of 0.21.1

Dosing chart

Weight (grams)	Total Dose (mL)	Weight (grams)	Total Dose (mL)
600-650	3.2	1301-1350	6.8
651-700	3.5	1351-1400	7.0
701-750	3.8	1401-1450	7.2
751-800	4.0	1451-1500	7.5
801-850	4.2	1501-1550	7.8
851-900	4.5	1551-1600	8.0
901-950	4.8	1601-1650	8.2
951-1000	5.0	1651-1700	8.5
1001-1050	5.2	1701-1750	8.8
1051-1100	5.5	1751-1800	9.0
1101-1150	5.8	1801-1850	9.2
1151-1200	6.0	1851-1900	9.5
1201-1250	6.2	1901-1950	9.8
1251-1300	6.5	1951-2000	10.0

Training available

Please contact us for access to a series of training videos, personalized on-site or virtual training sessions.

Get in touch

www.blesbiochem.com info@blesbiochem.com

60 Pacific Court, Unit 8 London, Ontario N5V 3K4 Canada T: 519-457-2537 | F: 519-457-7470

¹² Data obtained from IQVIA Solutions Canada Inc.

¹³ Germain, A., Nouraeyan, N., Claveau, M., Leone, M., Sant'Anna, G. Optimal surfactant delivery protocol using the bovine lipid extract surfactant: a quality improvement study. J Perinatol. 2020 Oct 3; 1-7. doi: 10.1038/s41372-020-00846-1. Online ahead of print.